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Abstract
Crystal structures and their stabilities for molybdenum under increasing
hydrostatic pressures are investigated by first-principles calculations of the
Gibbs free energy. Three structures are considered: body-centred cubic (bcc,
the ground state at zero pressure), hexagonal close-packed (hcp) and face-
centred cubic (fcc). For each structure and each pressure (up to 8 Mbar) the
equilibrium states are found from minima of the Gibbs free energy at zero
temperature. The stability is tested by calculating the elastic constants and
checking whether they satisfy the appropriate stability conditions. The bcc
structure is confirmed to be stable at zero pressure and at 6 Mbar. At and
above 6.2 Mbar the ground-state structure changes to hcp, which is found to be
stable at 7 Mbar. At 7.7 Mbar another transition occurs, and the ground-state
structure changes from hcp to fcc. The fcc structure, which is unstable at zero
pressure, becomes metastable over the range from 3 to 7.7 Mbar and becomes
the ground state at higher pressures (at least up to 8 Mbar). Direct confirmation
of these calculated transition pressures with experiment is not now possible,
as the maximum static pressure currently reached experimentally is 5.6 Mbar,
where Mo is found to be still in the bcc phase.

1. Introduction

Theoretical and experimental studies of phase stability in the transition metals over the past
several years have confirmed that such phase stability is mostly controlled by the number Zd

of valence d electrons per atom [1]. The periodic table shows that Zd increases with atomic
number and produces the hcp–bcc–hcp–fcc sequence of structures found in the nonmagnetic
4d and 5d series. In general, Zd also increases with increasing hydrostatic pressure because
under compression the s and p energy bands, being spatially extended, rise in energy faster
than the localized d bands. Thus compression favours the transfer of electrons from s- and
p-like states into d-like states (the so-called s → d transition) [1].

Based on this transfer Moriarty [1] made a number of interesting elementary structural
predictions. If increasing pressure produces a positive s → d electron transfer, then increasing
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pressure for a given element corresponds structurally to moving to the right in the periodic
table. Hence the effect of high pressure on the structure of most of the transition metals in the
central rows can be inferred from the structures of the elements to the right of the one under
consideration at zero pressure. Experimental confirmation of these predictions is hampered
at least in part by the difficulty of reaching the multi-megabar pressures needed to drive the
s → d transitions. Hixson et al [2] made the first attempt at observing such a transition in Mo
by measuring the acoustic velocity in compressed Mo using shock techniques.

Molybdenum is particularly interesting for high-pressure work because it is used in the
calibration of the ruby fluorescence technique for ultrahigh-pressure static experiments [7],
can be used as a gasket in experiments with the diamond-anvil cell (DAC) aimed at static
pressures up to 6 Mbar [8], and finds applications in the nuclear-energy and aircraft industries.
For Mo the elementary structural predictions mentioned above start from consideration of the
zero-pressure structures of the sequence Mo–Tc–Ru–Rh in the periodic table and thus suggest
that the structure sequence should be bcc–hcp–fcc with increasing pressure. Hixson et al [2]
found a sharp break in the sound velocity in Mo against density at about 2.1 Mbar and 4000 K,
which was interpreted to be indicative of a ‘solid–solid’ phase transition, but the structure of
the final phase was not determined. However, more recent experiments in a laser-heated DAC
up to 1 Mbar and 4100 K by Errandonea et al [3] suggested that the shock transition found by
Hixson et al [2] may be due to melting.

A large number of theoretical studies of Mo under pressure [4–12] have been mostly
qualitatively consistent with the elementary structural predictions mentioned above, but there
is as yet no consensus about the magnitudes of the theoretical transition pressures and no direct
experimental observation of any pressure-induced transition.

The theoretical studies were done almost exclusively with the linear muffin-tin orbital
method, either nonrelativistic or/and relativistic [8], in the atomic-sphere approximation [1] or
the local-density approximation [9]. The reported transition pressures vary widely in different
calculations, from 3.2 to 6.2 Mbar for the bcc–hcp transition, from 4.7 to 7.4 Mbar for the
hcp–fcc transition, and from 5.8 to 7.2 Mbar for the direct bcc–fcc transition. The experimental
studies were done predominantly with the DAC technique, which was progressively improved
to reach higher and higher pressures, from 2.72 Mbar [4] to 4.14 Mbar [5] and then to
5.60 Mbar [6]. All experimental studies consistently found the bcc structure to be stable
up to the highest pressure reached, i.e., no phase transition was detected.

We present here the results of calculations done with the full-potential linearized
augmented plane-wave (FPLAPW) method within the generalized gradient approximation
(GGA). The procedures used in these calculations (to be described below) are different from
those employed in all previous publications on Mo under pressure. The pressure is treated
here as an independent variable, and equilibrium states for bcc Mo, hcp Mo and fcc Mo at any
given pressure p are found from minima of the Gibbs free energy at T = 0 K, G = E + pV (E
and V are energy and volume per atom, respectively). The structural stability of these states
is tested by evaluating the corresponding elastic constants from second strain derivatives of
G. The results predict a transition from bcc to hcp Mo at about 6.2 Mbar (consistent with the
negative experimental findings up to 5.6 Mbar), and a transition from hcp to fcc Mo at about
7.7 Mbar. The pressure dependence of the lattice parameters and the volume per atom of bcc,
hcp and fcc Mo are obtained directly from the calculations.

2. Calculation procedures

For bcc, fcc, or in general any body-centred tetragonal (bct) structure, or for the hcp structure,
all defined by a set of lattice parameters a, b = a, c and angles α = β = 90◦ and γ = 90◦
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or 120◦, the total energy was calculated with the WIEN2k computer program developed
by Blaha and co-workers [13]. This program uses the FPLAPW method for computation
of the electronic structure of solids from the Kohn–Sham equations of density functional
theory [14, 15], allowing the choice of either nonrelativistic or semi-relativistic calculations
within either the local-density approximation (LDA) or the generalized gradient approximation
(GGA). The calculations in this work were done with the semi-relativistic GGA and with
the following parameters: muffin-tin radius of Mo RMT = 2.0 bohr; criterion for energy
convergence 1×10−6 Ryd; plane-wave cutoff RKmax = 8; largest vector in the charge-density
Fourier expansion GMAX = 16 bohr−1; k-point sampling in the Brillouin zone of 10 000
points, corresponding to 725, 560 and 785 k-points for bcc, hcp and fcc Mo, respectively, in
the irreducible wedge of the Brillouin zone. The 4s and 4p states are treated as band states
throughout the pressure range.

the determination of equilibrium states was done initially with the MNP procedure [16]
and then with calculations of the epitaxial Bain path (EBP), which is a special path through
tetragonal or hexagonal states that goes through all the equilibrium states. Those procedures
are described in detail in previous publications [17, 18] and will only be briefly summarized
here.

For any p �= 0 one choses a value of a = a1 and varies the value of c until one finds the
values c = c1 and E = E1 at which the slope of the energy E is (∂ E/∂c)a = −p a2

1 sin γ /2,
where γ is the angle between the a and b vectors (90◦ for bct structures, 120◦ or 60◦ for the hcp
structures). This requirement for the slope of E arises from the condition that the stress σ3 in
the c direction be equal to −p [17]. Then G1 = E1 + pV1 is the value of the free energy on the
EBP at a1 and at pressure p (V1 is calculated from a1 and c1). The procedure is repeated for a
sequence of choices of a, providing values of G, from which one can determine a minimum G p

which gives the Gibbs free energy at equilibrium at the chosen pressure p. Thus by choosing
different values of p one determines an equilibrium path along which G(p), a(p), c(p) and
V (p) are determined directly, i.e., avoiding constant-volume calculations to find equilibrium
and evaluation of the pressure from −(dE/dV ) along the equilibrium path.

Investigations of the stability of the equilibrium states found at each p require evaluation
of the elastic constants and tests that they satisfy the stability conditions for the crystal
structure considered [19]. Procedures for the calculation of elastic constants involve applying
appropriate strains to the unit cell, calculating the free energy of the strained cell and finally
evaluating the curvature of G as a function of the strains [20] (the slope of G vanishes at
equilibrium). For hcp structures one must also take into account internal relaxation, i.e., the
fact that the nonequivalent atom in the hcp unit cell is free to move away from the position
imposed by a homogeneous strain, thereby reducing the energy. Hence for hcp structures
one distinguishes between approximate elastic constants determined with homogenous strain,
called unrelaxed, and elastic constants determined with inhomogeneous strain, called relaxed.
In [20] a direct simple numerical procedure is given for calculating the relaxation effects.

3. Results and discussion

For each of the structures considered here (bcc, hcp and fcc) and for each pressure the
calculations produce one value of the equilibrium free energy G and one value each for the
lattice parameters a, c, c/a and V . We can therefore plot each of these quantities as a function
of pressure. Figure 1 depicts the pressure dependence of the lattice parameters of the three
structures. The behaviour is rather normal, except for the hcp c/a axial ratio, which drops
linearly by about 10% within the first megabar, varying but little thereafter with increasing
pressure. Figure 2 shows the equation of state for all three structures considered here, plus
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Figure 1. Calculated pressure dependence of the lattice parameters of bcc, hcp and fcc Mo (top
panel) and of the axial ratio c/a of hcp Mo (bottom panel).
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Figure 2. Theoretical pressure dependence of the atomic volume for bcc (full circles on solid
curve), hcp (open circles on dashed curve), and fcc Mo (plus signs on dotted curve, from 5 to 8
Mbar only). The stars and crosses are experimental shock data from [17] and [18], respectively.

experimental shock data from McQueen et al [21] and Hixson and Fritz [22] for bcc Mo. The
agreement of theory with experiment is good, being within 2%. In our results the volume
difference Vbcc − Vhcp at the transition pressure of 6.2 Mbar is 0.9 bohr.
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Figure 3. Free energy differences of hcp and fcc Mo with respect to bcc Mo. The dashed portion
of the fcc curve indicates that fcc Mo is unstable in that region. The inset shows a magnified detail
of the crossing between fcc and hcp free energies.

A plot of the free energies G of the three structures versus pressure shows small separation
since all three have large values (from about −8099 to −8095 Ryd in the pressure range
considered here), which differ from one another only by a few mRyd. More useful is a plot
of the difference between the hcp and fcc G values and the bcc G value at the same pressure.
Figure 3 shows the behaviour of these differences as a function of pressure. The bcc phase
has the lowest free energy up to about 6.2 Mbar, where the hcp free energy crosses it. The hcp
free energy in turn crosses the free energy of the fcc phase at about 7.7 Mbar (see the inset of
figure 3). Above 7.7 Mbar, up to at least 8 Mbar, the fcc phase has the lowest G value and is
the predicted ground state.

To establish the stability it is still necessary to test the stability conditions for each
equilibrium state at least at some selected pressures. This test, as mentioned above, requires
evaluation of all the elastic constants (six for tetragonal states, five for hexagonal states).

We first tested our procedures by calculating data for bcc Mo at zero pressure, for which
experimental data are available, since that is the ground state. For the lattice parameter we
find a = 3.1636 Å, which compares favourably with the experimental value of 3.1468 Å [23]
(0.5% difference). For the elastic constants c11, c12, c44, C ′ = (c11 − c12)/2 and the bulk
modulus B we find the results listed in the first row of table 1. The experimental data (at
T = 0 K) from [24] are given in parentheses in the second row: the differences amount to
0.3–1.5% for c11, c12, C ′ and B , and to about 14% for c44; hence the agreement is satisfactory,

We then calculated the elastic constants of bcc Mo at 6 Mbar, i.e., just before the G crossing
with the hcp phase. These constants are listed in the third row of table 1: their values have
increased, as expected, but the phase is still stable. It is interesting to compare our results with
those of Christensen et al [9]. These authors presented a table of the pressure dependence of
C ′, c44 and B for bcc Mo as calculated with the FP-LMTO method in the LDA approximation.
Interpolating that table to about 6 Mbar we find C ′ = 4.07 versus our 2.67, c44 = 6.8 versus our
7.35, and B = 18.5 versus our 20.5 (all in Mbar units). The agreement with our results is only
fair; the differences are probably to be ascribed to the different calculation procedures adopted.

For the hcp phase we tested the stability at 7 Mbar, i.e., at a pressure at which its free
energy is lower than that of the other two phases. We must evaluate all five elastic constants
and take care of the internal relaxation for the shear constants c44 and c66. The results are
shown in rows 4 and 5 of table 1 (the numbers in square brackets are unrelaxed constants).
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Table 1. Elastic constants of Mo structures at selected pressures. bcc = body-centred
cubic; bct = body-centred tetragonal; fcc = face-centred cubic; hcp = hexagonal close-packed;
p = hydrostatic pressure in Mbar; ci j = elastic constants in Mbar; C ′ = (c11 − c12)/2; B = bulk
modulus. The numbers in parentheses in the bcc structure are experimental values at 0 K (from [24]).
The numbers in square brackets in the hcp structure refer to unrelaxed constants. The ∗ in the fcc
structure indicates that the elastic constants were not calculated, since the phase is unstable (energy
maximum).

Structure p c11 c12 C ′ c13 c33 c44 c66 B

bcc 0 4.5472 1.7336 1.4068 1.0723 2.6715
(4.5002) (1.7292) (1.3855) (1.2503) (2.6529)

6 24.091 18.749 2.671 7.352 20.530
hcp 7 30.094 19.838 5.128 11.228 65.887 4.343 5.128

7 [4.356] [6.759]
bct 0 3.659 2.106 0.776 1.752 3.128 0.307 −1.491

1 −2.352
2 −0.656

fcc 0 to 2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
3 12.706 11.312 0.606 4.668 11.777
5 20.617 16.931 1.843 7.022 18.160
8 32.040 23.073 4.483 9.608 26.062

Since relaxation always reduces c44 and c66, relaxation is important for checking the stability.
The stability conditions [19] are fulfilled, hence hcp Mo is stable at 7 Mbar.

The fcc phase requires a special discussion. At zero pressure we find fcc Mo to be unstable.
This conclusion is immediately obvious from examination of the EBP for all tetragonal states of
Mo in the form of energy versus axial ratio c/a. This EBP is the curve marked 0 (for p = 0) in
the top panel of figure 4, where the free energy is given in mRyd with respect to the bcc minimum
at c/a = 1. At c/a = √

2, the fcc phase, there is an energy maximum; hence the fcc phase
is tetragonally unstable. There is also a higher-energy minimum at c/a = 1.76, a bct state of
Mo which needs to be tested for metastability. The calculated elastic constants of this state are
listed in row 6 of table 1, where c66 is negative; hence bct Mo is also unstable at zero pressure.

With increasing pressure the bct minimum moves left, towards smaller c/a values, as
indicated by the curves marked 1, 2 and 2.5 (for p = 1, 2, 2.5 Mbar, respectively). The
evolution may be followed more easily in the magnified detail depicted in the bottom panel of
figure 4. At 1 and 2 Mbar the bct state is still unstable, as shown by the negative values of c66

listed in table 1, and there is still an energy maximum at c/a = √
2, i.e., the fcc phase is also still

unstable. This situation is indicated by the ∗ listed in row 9 of table 1. At 2.5 Mbar the maximum
and the minimum merge to give an inflection point, and at higher pressures they separate so that
now there is a minimum at the fcc position (top panel of figure 4). We tested the stability of the
fcc phase at 3, 5 and 8 Mbar—the corresponding elastic constants are listed in the bottom three
rows of table 1, and they all satisfy the stability conditions. The conclusion is therefore that
fcc Mo is unstable from 0 to about 2.5 Mbar, then becomes metastable up to about 7.7 Mbar,
where its free energy crosses and becomes lower than that of the hcp phase, and at higher
pressures (tested here only up to 8 Mbar) it becomes stable. We emphasize this conclusion in
figure 3 by drawing the fcc curve dashed from 0 to 3 Mbar and solid at higher pressures.

The overall shapes of the free-energy difference curves in figure 3 resemble those presented
in figure 1 of [9], but there is an important difference. Our figure 3 shows that the hcp-phase
free energy lies below the fcc free energy at all pressures up to 7.7 Mbar (and becomes the
ground state at 6.2 Mbar); at 7.7 Mbar the hcp free energy crosses the fcc free energy and fcc
becomes the ground state. In figure 1 of [9] the hcp enthalpy (or free energy at 0 K) always
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lies above the fcc values and is never the ground state. This difference in the position of the fcc
phase relative to the hcp phase may be due to our use of pressure as a basic variable so that the
equation of state is not needed to find the equilibrium pressure. The necessity of differentiating
E(V ) to find the pressure loses accuracy compared to our direct procedure for determining the
equilibrium state at a given pressure. Our procedure worked well in predicting the pressure of
the hcp-to-bcc phase transition in Mg [18].

The result of the present study is therefore that the crystal structure of Mo changes from bcc
to hcp at 6.2 Mbar and then from hcp to fcc at 7.7 Mbar. This result is in qualitative agreement
with the elementary structural predictions of Moriarty [1] mentioned in the introduction, and
illustrates the role played by the s → d transition in this material. How this result compares
with calculations by others and with experiment is shown in the summary of table 2. Three of
those calculations do not result in the bcc–hcp–fcc sequence found in this work and by others,
but find rather a direct transition from bcc to fcc. The experimental results, as mentioned above,
are not relevant, as no transition was predicted by theory in the attainable range of pressures.
The result of Ruoff et al [6] that bcc Mo is still stable at 5.6 Mbar is indeed consistent with
our and Smirnova et al’s [11] result, but it would of course be desirable to have a positive
confirmation. Unfortunately, the ultrahigh pressure range is still a very difficult range to
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Table 2. Transition pressures for molybdenum. Summary of transition pressures (in Mbar)
reported in the literature from theoretical and experimental studies of the crystal structures of Mo
at ultrahigh pressures. The theoretical results apply to 0 K. The experimental results are given in
the ‘shock data’ and ‘DAC data’ (diamond-anvil-cell data) lines.

Source bcc → hcp hcp → fcc bcc → fcc

Hixson et al a 3.2 4.7 —
Moriartyb 4.2 6.2 —
Söderlind et al c 5.2 7.4 —
Christensen et al d — — 5.8
Boettgere — — 6.6
Smirnova et al f 6.2 — —
Belonoshko et al g — — 7.2
This work 6.2 7.7 —
Shock dataa 2.1 — —
DAC datah >5.6 — —

a Reference [2]. Acoustic velocity data were interpreted to demonstrate a ‘solid–solid’ transition
at about 2.1 Mbar and 4100 K, but no information was given about the structure of the final phase.
The ‘solid–solid’ was tentatively identified with the bcc → hcp transition.
b Reference [7].
c Reference [8].
d Reference [9]. The enthalpies of bcc and hcp Mo were found to cross at 6.5 Mbar, but the fcc
phase has the lowest enthalpy above 5.8 Mbar.
e Reference [10]. The 6.6 Mbar result was obtained with a relativistic treatment; a nonrelativistic
calculation yielded 4.7 Mbar.
f Reference [11]. The quoted result of 6.2 Mbar was found with the full-potential linear muffin-tin
orbital (FP-LMTO) method. An LMTO Green function method within the coherent potential and
atomic-sphere approximations (LMTO-GF-CPA-ASA) found 7.3 Mbar.
g Reference [12].
h Reference [6]. Room-temperature result.

attain reliably by static-pressure experiments. Despite the efforts of other experimentalists
(Takemura and Nakano [25] reached 2.23 Mbar by using synthetic diamond as a backing plate
in the DAC) the maximum pressure attained in a DAC remains 5.6 Mbar, as reached by Ruoff
et al [5]. The calculations of Smirnova et al [11] indicate that alloys of Mo with Re and
Os should have notably lower transition pressures, suggesting that x-ray experiments on such
alloys may be useful to clarify the structural sequence of pure Mo. At ultrahigh pressures there
is in addition the difficult problem of ensuring hydrostaticity [26, 27].

4. Conclusion

Calculations with the FPLAPW-GGA method find pressure-induced transitions in Mo from
bcc to hcp at 6.2 Mbar and from hcp to fcc at 7.7 Mbar. The stability of the structures is studied
by evaluation of the corresponding elastic constants to pass the stability-conditions test. The
fcc structure is found to be unstable from 0 to about 2.5 Mbar, then metastable up to 7.7 Mbar
and finally stable at higher pressures. The bcc structure is confirmed to be stable at 6 Mbar,
the hcp structure at 7 Mbar and the fcc structure at 8 Mbar.
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